skip to main content


Search for: All records

Creators/Authors contains: "Luo, Jiangang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    Atlantic tarpon (Megalops atlanticus) are a highly migratory species ranging along continental and insular coastlines of the Atlantic Ocean. Due to their importance to regional recreational and sport fisheries, research has been focused on large-scale movement patterns of reproductively active adults in areas where they are of high economic value. As a consequence, geographically restricted focus on adults has left significant gaps in our understanding of tarpon biology and their movements, especially for juveniles in remote locations where they are common. Our study focused on small-scale patterns of movement and habitat use of juvenile tarpon using acoustic telemetry in a small bay in St. Thomas, US Virgin Islands.

    Results

    Four juvenile tarpon (80–95 cm FL) were tracked from September 2015 to February 2018, while an additional eight juveniles (61–94 cm FL) left the study area within 2 days after tagging and were not included in analysis. Four tarpon had > 78% residency and average activity space of 0.76 km2(range 0.08–1.17 km2) within Brewers Bay (1.8 km2). Their vertical distribution was < 18 m depth with occasional movements to deeper water. Activity was greater during day compared to night, with peaks during crepuscular periods. During the day tarpon used different parts of the bay with consistent overlap around the St. Thomas airport runway and at night tarpon typically remained in a small shallow lagoon. However, when temperatures in the lagoon exceeded 30 °C, tarpon moved to cooler, deeper waters outside the lagoon.

    Conclusion

    Our results, although limited to only four individuals, provide new baseline data on the movement ecology of juvenile Atlantic tarpon. We showed that juvenile tarpon had high residency within a small bay and relatively stable non-overlapping daytime home ranges, except when seasonally abundant food sources were present. Fine-scale acoustic tracking showed the effects of environmental conditions (i.e., elevated seawater temperature) on tarpon movement and habitat use. These observations highlight the need for more extensive studies of juvenile tarpon across a broader range of their distribution, and compare the similarities and differences in behavior among various size classes of individuals from small juveniles to reproductively mature adults.

     
    more » « less
  2. Abstract

    Understanding large‐scale migratory behaviours, local movement patterns and population connectivity are critical to determining the natural processes and anthropogenic stressors that influence population dynamics and for developing effective conservation plans. Atlantic tarpon occur over a broad geographic range in the Atlantic Ocean where they support valuable subsistence, commercial and recreational fisheries. From 2001 through 2018, we deployed 292 satellite telemetry tags on Atlantic tarpon in coastal waters off three continents to document: (a) seasonal migrations and regional population connectivity; (b) freshwater and estuarine habitat utilization; (c) spawning locations; and (d) shark predation across the south‐eastern United States, Gulf of Mexico and northern Caribbean Sea. These results showed that some mature tarpon make long seasonal migrations over thousands of kilometres crossing state and national jurisdictional borders. Others showed more local movements and habitat use. The tag data also revealed potential spawning locations consistent with those inferred in other studies from observations of early life stage tarpon leptocephalus larvae. Our analyses indicated that shark predation mortality on released tarpon is higher than previously estimated, especially at ocean passes, river mouths and inlets to bays. To date, there has been no formal stock assessment of Atlantic tarpon, and regional fishery management plans do not exist. Our findings will provide critical input to these important efforts and assist the multinational community in the development of a stock‐wide management information system to support informed decision‐making for sustaining Atlantic tarpon fisheries.

     
    more » « less